The chronic infections of cystic fibrosis (CF) airways with Pseudomonas aeruginosa are a paradigm of how environmental bacteria can conquer, adapt, and persist in an atypical habitat and successfully evade defense mechanisms and chemotherapy in a susceptible host. The within-host evolution of intraclonal diversity has been examined by whole-genome sequencing, phenotyping, and competitive fitness experiments of serial P. aeruginosa isolates collected from CF airways since onset of colonization for a period of up to 40 years. The spectrum of de novo mutations and the adaptation of phenotype and fitness of the bacterial progeny were more influenced by the living conditions in the CF lung than by the clone type of their ancestor and its genetic repertoire.