In the clinical management of lung cancer, radiotherapy remains a cornerstone of multimodal treatment strategies, often used alongside surgery or in combination with systemic therapies such as chemotherapy, tyrosine kinase inhibitors, and immune checkpoint inhibitors. While conventional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) continue to play a central role in staging, response assessment, and radiotherapy planning, advanced imaging techniques, particularly [(18)F]FDG PET/CT, are being increasingly integrated into routine clinical practice. These advanced techniques address the limitations of standard imaging by providing insight into molecular and metabolic tumor characteristics, enabling precise tumor visualization, accurate target volume delineation, and early treatment response assessment. This review examines the role of radiotherapy in the multidisciplinary management of lung cancer, detailing current concepts of morphological and functional imaging for staging and treatment planning. It also highlights the growing importance of PET-based radiotherapy planning, emphasizing its contributions to target volume definition and predictive value for treatment outcomes. Recent methodological advances, including the integration of artificial intelligence (AI), radiomics, technical innovations, and novel PET ligands, are discussed, highlighting their potential to improve the precision, efficacy, and personalization of lung cancer radiotherapy planning.
Keywords