Colorectal cancer (CRC) remains a major global health challenge, with an increasing incidence of early-onset cases among young adults. Targeted analysis of cell-free DNA (cfDNA) methylation in blood has emerged as a promising minimally invasive diagnostic approach. While digital PCR (dPCR) offers high sensitivity and low turnaround times, conventional bisulfite-based dPCR assays require large plasma volumes due to cfDNA degradation, limiting clinical feasibility. To overcome this limitation, we developed a bisulfite-free, low-plasma-volume assay by coupling cell-free methylated DNA immunoprecipitation (cfMeDIP) with multiplexed dPCR for methylation detection. Assays were designed for CRC targets based on publicly available bisulfite-based plasma data and optimized for native, bisulfite-untreated cfDNA. The cfMeDIP-dPCR assays were first developed and optimized on circulating tumor DNA surrogates derived from HCT116 cells and subsequently validated in a pilot study, including 32 early-onset CRC (EO-CRC) patients and 29 non-CRC individuals. Methylation ratios, defined as the proportion of methylated to total cfDNA copies per marker, served as a diagnostic indicator. Three out of four selected markers (SEPT9, KCNQ5, and C9orf50) were successfully adapted, with significantly higher methylation ratios (p