PURPOSE: Various parameters of regional lung ventilation can be estimated using phase-resolved functional lung (PREFUL)-MRI. The parameter "ventilation correlation coefficient (Vent-CC)" was shown advantageous because it assesses the dynamics of regional air flow. Calculating Vent-CC depends on a voxel-wise comparison to a healthy reference flow curve. This work examines the effect of placing a reference region of interest (ROI) in various lung quadrants or in different coronal slices. Furthermore, algorithms for automated ROI selection are presented and compared in terms of test-retest repeatability. METHODS: Twenty-eight healthy subjects and 32 chronic obstructive pulmonary disease (COPD) patients were scanned twice using PREFUL-MRI. Retrospective analyses examined the homogeneity of air flow curves of various reference ROIs using cross-correlation. Vent-CC and ventilation defect percentage (VDP) calculated using various reference ROIs were compared using one-way analysis of variance (ANOVA). The coefficient of variation was calculated for Vent-CC and VDP when using different reference selection algorithms. RESULTS: Flow-volume curves were highly correlated between ROIs placed at various lung quadrants in the same coronal slice (r > 0.97) with no differences in Vent-CC and VDP (ANOVA: p > 0.5). However, ROIs placed at different coronal slices showed lower correlation coefficients and resulted in significantly different Vent-CC and VDP values (ANOVA: p < 0.001). Vent-CC and VDP showed higher repeatability when calculated using the presented new algorithm. CONCLUSION: In COPD and healthy cohorts, assessing regional ventilation dynamics using PREFUL-MRI in terms of the Vent-CC metric showed higher repeatability using a new algorithm for selecting a homogenous reference ROI from the same slice.
Keywords