Cystic fibrosis transmembrane conductance regulator (CFTR) modulators are the first approved drugs targeting underlying epithelial ion/fluid transport defects in patients with cystic fibrosis (CF). Current CFTR modulators restore mutant CFTR activity to up to approximately 50% of normal CFTR Cl(-) channel function, translating into improvements in percentage predicted FEV1 and other clinical outcomes. In addition, reductions in airway bacterial colonisation are observed; however, patients fail to eradicate bacteria over time and still experience pulmonary exacerbations, and long-term safety of CFTR modulator therapy remains unknown. Currently approved CFTR modulators are predicted to be effective for up to 90% of patients. A mutation-agnostic approach could address the remaining 10% with CFTR mutations unresponsive to CFTR modulator therapy and may act together with CFTR modulator therapy to further improve epithelial ion/fluid transport and clinical outcomes. Together with CFTR and other Cl(-) channels, the epithelial Na(+) channel (ENaC) is key to regulating airway surface liquid homeostasis. ENaC activity is limiting for Na(+)/fluid absorption and remains intact or may even be increased in CF airways, leading to increased Na(+)/fluid absorption, airway surface dehydration, impaired mucociliary clearance, bacterial infection, inflammation and progressive lung damage - the major cause of CF-related morbidity and mortality. Inhibition of ENaC in the airways is therefore an attractive therapeutic target to counteract airway surface dehydration and downstream consequences in CF lung disease. This review examines ENaC inhibition in CF therapy, and describes a new ENaC inhibitor with potential mutation-agnostic therapeutic benefit, both alone, and in synergy with CFTR modulators.