AIMS: The aim of the study was to investigate the role of cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) in sustained hypoxic pulmonary vasoconstriction (HPV). METHODS: Vasomotor responses of isolated mouse intrapulmonary arteries (IPAs) were assessed using wire myography. Key findings were verified by haemodynamic measurements in isolated perfused and ventilated mouse lungs. RESULTS: Pharmacological inhibition of EET synthesis with MS-PPOH, application of the EET antagonist 14,15-EEZE or deficiency of CYP2J isoforms suppressed sustained HPV. In contrast, knockdown of EET-degrading soluble epoxide hydrolase or its inhibition with TPPU augmented sustained HPV almost twofold. All EET regioisomers elicited relaxation in IPAs pre-contracted with thromboxane mimetic U46619. However, in the presence of KCl-induced depolarization, 5,6-EET caused biphasic contraction in IPAs and elevation of pulmonary vascular tone in isolated lungs, whereas other regioisomers had no effect. In patch-clamp experiments, hypoxia elicited depolarization in pulmonary artery smooth muscle cells (PASMCs), and 5,6-EET evoked inward whole cell currents in PASMCs depolarized to the hypoxic level, but not at their resting membrane potential. CONCLUSIONS: The EET pathway substantially contributes to sustained HPV in mouse pulmonary arteries. 5,6-EET specifically appears to be involved in HPV, as it is the only EET regioisomer able to elicit not only relaxation, but also sustained contraction in these vessels. 5,6-EET-induced pulmonary vasoconstriction is enabled by PASMC depolarization, which occurs in hypoxia. The discovery of the dual role of 5,6-EET in the regulation of pulmonary vascular tone may provide a basis for the development of novel therapeutic strategies for treatment of HPV-related diseases.
- Strielkov, I.
- Krause, N. C.
- Knoepp, F.
- Alebrahimdehkordi, N.
- Pak, O.
- Garcia, C.
- Ghofrani, H. A.
- Schermuly, R. T.
- Seeger, W.
- Grimminger, F.
- Sommer, N.
- Weissmann, N.
Keywords
- cytochrome P450 epoxygenase
- epoxyeicosatrienoic acid
- hypoxia
- hypoxic pulmonary vasoconstriction
- pulmonary arteries
- soluble epoxide hydrolase