Science and Research

Bitter tastants relax the mouse gallbladder smooth muscle independent of signaling through tuft cells and bitter taste receptors

Disorders of gallbladder motility can lead to serious pathology. Bitter tastants acting upon bitter taste receptors (TAS2R family) have been proposed as a novel class of smooth muscle relaxants to combat excessive contraction in the airways and other organs. To explore whether this might also emerge as an option for gallbladder diseases, we here tested bitter tastants for relaxant properties and profiled Tas2r expression in the mouse gallbladder. In organ bath experiments, the bitter tastants denatonium, quinine, dextromethorphan, and noscapine, dose-dependently relaxed the pre-contracted gallbladder. Utilizing gene-deficient mouse strains, neither transient receptor potential family member 5 (TRPM5), nor the Tas2r143/Tas2r135/Tas2r126 gene cluster, nor tuft cells proved to be required for this relaxation, indicating direct action upon smooth muscle cells (SMC). Accordingly, denatonium, quinine and dextromethorphan increased intracellular calcium concentration preferentially in isolated gallbladder SMC and, again, this effect was independent of TRPM5. RT-PCR revealed transcripts of Tas2r108, Tas2r126, Tas2r135, Tas2r137, and Tas2r143, and analysis of gallbladders from mice lacking tuft cells revealed preferential expression of Tas2r108 and Tas2r137 in tuft cells. A TAS2R143-mCherry reporter mouse labeled tuft cells in the gallbladder epithelium. An in silico analysis of a scRNA sequencing data set revealed Tas2r expression in only few cells of different identity, and from in situ hybridization histochemistry, which did not label distinct cells. Our findings demonstrate profound tuft cell- and TRPM5-independent relaxing effects of bitter tastants on gallbladder smooth muscle, but do not support the concept that these effects are mediated by bitter receptors.

  • Keshavarz, M.
  • Ruppert, A. L.
  • Meiners, M.
  • Poharkar, K.
  • Liu, S.
  • Mahmoud, W.
  • Winterberg, S.
  • Hartmann, P.
  • Mermer, P.
  • Perniss, A.
  • Offermanns, S.
  • Kummer, W.
  • Schütz, B.

Keywords

  • Animals
  • Mice
  • Calcium/metabolism
  • Dextromethorphan/pharmacology
  • *Gallbladder/metabolism
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Muscle Relaxation/drug effects
  • *Muscle, Smooth/metabolism
  • Myocytes, Smooth Muscle/metabolism/drug effects
  • Noscapine/pharmacology
  • Quaternary Ammonium Compounds/pharmacology
  • Quinine/pharmacology
  • *Receptors, G-Protein-Coupled/metabolism/genetics
  • Signal Transduction
  • Taste/physiology
  • *TRPM Cation Channels/metabolism/genetics
  • Tuft Cells/metabolism
  • Cholecystokinin
  • Denatonium
  • Dextromethorphan
  • Quinine
  • Taste transduction cascade
  • Transient receptor potential family member 5
Publication details
DOI: 10.1038/s41598-024-69287-6
Journal: Sci Rep
Pages: 18447 
Number: 1
Work Type: Original
Location: UGMLC
Disease Area: General Lung and Other
Partner / Member: JLU, MPI-BN, UMR
Access-Number: 39117690

DZL Engagements

chevron-down