Science and Research

Next-generation lung cancer pathology: Development and validation of diagnostic and prognostic algorithms

Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors. In this study, we develop a clinically useful computational pathology platform for NSCLC that can be a foundation for multiple downstream applications and provide immediate value for patient care optimization and individualization. We train the primary multi-class tissue segmentation algorithm on a substantial, high-quality, manually annotated dataset of whole-slide images with lung adenocarcinoma and squamous cell carcinomas. We investigate two downstream applications. NSCLC subtyping algorithm is trained and validated using a large, multi-institutional (n = 6), multi-scanner (n = 5), international cohort of NSCLC cases (slides/patients 4,097/1,527). Moreover, we develop four AI-derived, fully explainable, quantitative, prognostic parameters (based on tertiary lymphoid structure and necrosis assessment) and validate them for different clinical endpoints. The computational platform enables the high-precision, quantitative analysis of H&E-stained slides. The developed prognostic parameters facilitate robust and independent risk stratification of patients with NSCLC.

  • Kludt, C.
  • Wang, Y.
  • Ahmad, W.
  • Bychkov, A.
  • Fukuoka, J.
  • Gaisa, N.
  • Kühnel, M.
  • Jonigk, D.
  • Pryalukhin, A.
  • Mairinger, F.
  • Klein, F.
  • Schultheis, A. M.
  • Seper, A.
  • Hulla, W.
  • Brägelmann, J.
  • Michels, S.
  • Klein, S.
  • Quaas, A.
  • Büttner, R.
  • Tolkach, Y.

Keywords

  • Ai
  • Nsclc
  • algorithm
  • lung cancer
  • prognosis
  • subtyping
Publication details
DOI: 10.1016/j.xcrm.2024.101697
Journal: Cell Rep Med
Pages: 101697 
Work Type: Original
Location: BREATH
Disease Area: LC
Partner / Member: MHH
Access-Number: 39178857

DZL Engagements

chevron-down