Science and Research

Specific molecular peak analysis by ion mobility spectrometry of volatile organic compounds in urine of COVID-19 patients: A novel diagnostic approach

INTRODUCTION: SARS-CoV-2 is usually diagnosed from naso-/oropharyngeal swabs which are uncomfortable and prone to false results. This study investigated a novel diagnostic approach to Covid-19 measuring volatile organic compounds (VOC) from patients' urine. METHODS: Between June 2020 and February 2021, 84 patients with positive RT-PCR for SARS-CoV-2 were recruited as well as 54 symptomatic individuals with negative RT-PCR. Midstream urine samples were obtained for VOC analysis using ion mobility spectrometry (IMS) which detects individual molecular components of a gas sample based on their size, configuration, and charge after ionization. RESULTS: Peak analysis of the 84 Covid and 54 control samples showed good group separation. In total, 37 individual specific peaks were identified, 5 of which (P134, 198, 135, 75, 136) accounted for significant differences between groups, resulting in sensitivities of 89-94% and specificities of 82-94%. A decision tree was generated from the relevant peaks, leading to a combined sensitivity and specificity of 98% each. DISCUSSION: VOC-based diagnosis can establish a reliable separation between urine samples of Covid-19 patients and negative controls. Molecular peaks which apparently are disease-specific were identified. IMS is an additional non-invasive and cheap device for the diagnosis of this ongoing endemic infection. Further studies are needed to validate sensitivity and specificity.

  • Boeselt, T.
  • Terhorst, P.
  • Kroenig, J.
  • Nell, C.
  • Spielmanns, M.
  • Boas, U.
  • Veith, M.
  • Vogelmeier, C.
  • Greulich, T.
  • Koczulla, A. R.
  • Beutel, B.
  • Huber, J.
  • Heers, H.

Keywords

  • Covid-19
  • Ims
  • Urine
  • Voc
  • diagnostics
  • electronic nose
  • smell prints
Publication details
DOI: 10.1016/j.jviromet.2024.114910
Journal: J Virol Methods
Pages: 114910 
Work Type: Original
Location: UGMLC
Disease Area: PALI
Partner / Member: UMR
Access-Number: 38452823

DZL Engagements

chevron-down