BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.
- Hoffmann, M.
- Hofmann-Winkler, H.
- Smith, J. C.
- Krüger, N.
- Arora, P.
- Sørensen, L. K.
- Søgaard, O. S.
- Hasselstrøm, J. B.
- Winkler, M.
- Hempel, T.
- Raich, L.
- Olsson, S.
- Danov, O.
- Jonigk, D.
- Yamazoe, T.
- Yamatsuta, K.
- Mizuno, H.
- Ludwig, S.
- Noé, F.
- Kjolby, M.
- Braun, A.
- Sheltzer, J. M.
- Pöhlmann, S.
Keywords
- Camostat
- Foy-251
- Gbpa
- SARS-CoV-2
- TMPRSS2
- O.D., D.J., S.L., F.N., M.K. have nothing to disclose. T.Y., K.Y., H.M. report
- personal fees from Ono Pharmaceutical, during the conduct of the study. M.H. reports
- grants from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation),
- during the conduct of the study. J.C.S. reports personal fees from Google, personal
- fees from Meliora Therapeutics, outside the submitted work. J.C.S. is an employee of
- Google. This work was performed outside of her affiliation with Google and used no
- proprietary knowledge or materials from Google. P.A. reports grants from Country of
- Lower Saxony, during the conduct of the study. T. H. reports grants from Deutsche
- Forschungsgemeinschaft (DFG) SFB/TRR 186, during the conduct of the study. L.R.
- reports grants from Bayer AG, outside the submitted work. A.B. reports grants from
- Fraunhofer DRECOR (Drug Repurposing for Corona), during the conduct of the study
- other from Fraunhofer ITEM, outside the submitted work. J.M.S. reports grants from
- NIH, grants from New York Community Trust, grants from Damon Runyon Foundation,
- grants from American Cancer Society, grants from Department of Defense, during the
- conduct of the study
- personal fees from Meliora Therapeutics, personal fees from
- Tyra Biosciences, personal fees from Ono Pharmaceutical, outside the submitted work.
- S.P. reports grants from Bundesministerium für Bildung und Forschung, grants from
- Deutsche Forschungsgemeinschaft, grants from Country of Lower Saxony, during the
- conduct of the study
- other from Ono Pharmaceutical, outside the submitted work.