Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D-/- mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D-/- mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D-/- mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D-/- than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D-/- mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse.
- Muhlfeld, C.; Madsen, J.; Mackay, R. M.; Schneider, J. P.; Schipke, J.; Lutz, D.; Birkelbach, B.; Knudsen, L.; Botto, M.; Ochs, M.; Clark, H.
Keywords
- Alveolar epithelium
- Bone marrow transplantation
- Design-based stereology
- Irradiation
- Surfactant