PURPOSE: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis. METHODS: The FLORET sequence was used to continuously acquire data over 7 ± 2 min in 36 participants, including healthy subjects (N = 7) and patients with various pulmonary conditions (N = 29). Data were reconstructed into respiratory images using motion-compensated low-rank reconstruction, and a 3D PREFUL algorithm was adapted to quantify static and dynamic ventilation surrogates. Image sharpness and signal-to-noise ratio were evaluated across different motion states. PREFUL ventilation metrics were compared with static (129)Xe ventilation MRI. RESULTS: Optimal image sharpness and accurate ventilation dynamics were achieved using 24 respiratory bins, leading to their use in the study. A strong correlation was found between 3D PREFUL FLORET UTE ventilation defect percentages (VDPs) and (129)Xe VDPs (r
Keywords